AD-A102 875  NAVAL gCEANOGRAPHIC OFFICE NSTL STATION MS G 22/2 .
A NEW TECHNIQUE FOR CORRECTING SATELLITE EPHEMERIS ERRORS
APR 81 J R CLOUTIER INDIR-.ETC(U,
UNCLASSIFIED NOO-TR=246

1o
&




= A Gt

TR 246

LV
TECHNICAL REPORT @ :

;
A NEW TECHNIQUE FOR CORRECTING f
SATELLITE EPHEMERIS ERRORS j
INDIRECTLY OBSERVED FROM |

RADAR ALTIMETRY

ADA102875

JAMES R. CLOUTIER

DTIC

oo CCCTE M
.~ AUG1 41981

APRIL 198l

C

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

ONC FILE copy

PREPARED BY
 COMMANDING OFFICER,

NAVAL OCEANOGRAPHIC OFFICE AR
NSTL STATION, BAY ST. LOUIS, MS 39622 = VAUNEANEN

PREPARED FOR
COMMANDER
NAVAL OCEANOGRAPHY COMMAND

N§II$TA§ON, BAi Sa Liblﬁj\’li 39529

~
TN




FOREWORD

In the past three or four years, several methods (e.g., see References 1 and 2) have
been devised and used to remove ephemeris errors present in geoid height and vertical
deflection data obtained from the GEOS-3 satellite. The methods, though varying to some
extent, all have two common features. These are that 1) the satellite's ground track is
split into ascending and descending tracks and that 2) an a priori functional form is assumed
for the ephemeris errors along each track,

There are several shortcomings in this approach. First, no a priori estimates of the
ephemeris errors along each track are available. Lack of such information tends to make
the selection of the functional form haphazard. Secondly, correlations between time-
contiguous ascending and descending tracks are not accounted for. Failure to do so pro-
duces an unrealistic solution. Finally, discrete jumps in the ephemeris may be produced
along solution-area boundaries. With regards to GEQOS-3, this latter problem has never

been addressed.

The technique described herein overcomes all of these drawbacks. It is believed that
the use of this technique will resolve the inconsistencies observed in previously processed
GEOS-3 data and enhance present processing of SEASAT data.

W. C. Palmer
Captain, USN

Commanding Officex
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INTRODUCTION

The orbit of either the GEOS-3 or SEASAT satellite is such that, over a long period
of time, the satellite's ground track repeatedly intersects itself. At many of these inter-
sections, there is a data point in the form of an observed geoid height difference. Since
high-frequency, temporal, and environmental effects have been previously removed from
the satellite’s radar-altimetry measurements, these observed differences are attributed
to low-frequency errors in the satellite's ephemeris.] Let f(t) be the negative of the ver-
tical component of the ephemeris error and let §); be the geoid height difference ohserved
at the jth intersection. We have !

Flt, ) - flt ) =6y, 3 =1,2,...,N
1 Pt Ty "

where t].>tp vjandt] >t]'for‘1'>j.

J J 1 J
In order to correct the ephemeris errors, we must find a solution y(t) which satisfies
Equation (1) either exactly or to some predetermined noise level,

Two facts complicate the situation. First, a bias in E(t) can never be detected through g
Equation (1) since it gets cancelled out in the subtraction process., Secondly, even within
the equivalence class of all continuous functions with the same bias, the solution of Equa-

tion (1) is not unique, To overcome these difficulties, we seek an unbiased, low-{requency
solution,

Keeping this in mind, there are two ways of approaching the problem, We can either
assume a parameterized functional form y, ag, @1, e ey ap) for the solution and perform
some type of optimization over the parameters or we can first seek a discrete solution
yi = y(t;) defined at the nodes tj,, tp., j=1,«.., N and then fit a continuous function to the

result, Since no a priori inIorl)natI]on is available regarding the functional form, we choose
the latter approach,

e e A

D s AL TRV I SpeEo P

1 Obviously, any long-wavelength errors will produce these differences. For simplicity,
throughout this report we will classify all long-wavelength errors as ephemeris errors.

The subscripts "1"" and "'p" are labels distinguishing later points in time {rom previous,
or past, points in time,




STATEMENT OF THE PROBLEM

We can obtain an unbiased, discrete, low-frequency solution of Equation (1) by solving
the following problem. Minimize the weighted3 variation

J = %— Wil - yi)? ’ @

Y, -y. =38 i =
]J. p\:i ]j J 1,...,N , (3)
and the additional constraint
2N i
y; =0 ) 4)
i=1 ’
- where4 (t.) ( )
* y-=yt-,y]=yt sy, =ylt ), (5)
| ‘ TRy Ty P
.
and ]
: z
t) <t <ol < tZN—l < tf‘N (6) i

Problem (2) - (4) can be simplified somewhat by solving Equation (3) for y, and sub-
stituting the result into Equations (2) and (4). Before doing so, we define ]

1if 33 gpy =
Ky ={ i=1,...,2N , (7

P

if 43 N
j 3331J i

and

6§, =0 J=1,...,N ®

3 The weights w; > 0,i=1, ..., 2N-1 will be used to account for the uneven spacing
between intersections.

4 It should be noted that for every i there exists a j such that either Ij =ior pj =i.
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A new equivalent problem can now be stated,

Minimize the weighted variation

=1 J=1

[

In vector notation this becomes minimize the quadratic function

f(2) = 2T AE+B'2 + ¢ :

with respect to z, subject to the linear constraint

hZ) =dz+e=0 ,
where5
'ypl sz I—dl
Yp, i %
7= s ? = . s —a = ’ =
: A= lagy)
) = 1,...,N
Yy h“ dN m ) s
P | L L n=1,...,N
with
a =W tw +w, +w m=1, ,N
m,m P pﬁ,1 ]m ]rﬁl

(9)

(10)

an

(12)

13)

14)

5 -
Since, from this point on, we will be dealing with the vector z, it will be essential to
remember that zy = ij’ J =1, eee,yN,
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where

j for m # n

f Ppy ~ Py
otnerwise
if pm=pn
otherwise
if Py = 1n
otherwise
if pmzln

otherwise

ifl =p
m n
otherwise
if ]m = P,
otherwise
if ]m = ]n
otherwise
if ]m = ]n

otherwise

-1

[}
[y

“+
ot

]
—

+ 1

(15)

(16-1)

(16-2)

(16-3)

(16-4)

(16-5)

(16-6)

(16-7)

(16~8)
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m
N
1
e=7 X2 1,
In the above definitions, =1
&, = 0, 62N+1 =0, W, = 0, WoN T 0
and, in Equations (14)-(17),
wpm=0 1f]m=pm+1

We now turn our attention to the solution of Problem (11) - (12),

(18)

(19)

(20

(21-1)

(21-2)
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COMMENTS ON THE SOLUTION OF THE PROBLEM

We are confronted with the problem of minimizing the quadratic function®

f(z) = F 2z + 5z )
subject to the linear constraint
- - "'T_A -
h(z) =dz+e=20 (23)

This problem has a unique global solution providing that the matrix A is positive definite

on the subspace My = {2:dTz =0} .7 The problem can be recast as that of minimizing
the Lagrangian

F(zZ,2)

AT

-

= %.QTAZ + BT‘Z‘ +a{ad'z + e) (24-2)

with respect to the vector z subject to the constraint (23), and the solution can be found by
solving the linear system

Fe(Z,0) = 0 (25-1)

=
—
N
~—
]
O

(25-2)

Specifically, we must find the vector z and the scalar Lagrange multiplier X which satisfy

l o e -

1 d z -b
beed T2 l---

|

|

o] - (26)

apl >

This seems simple and straightforward, and is indeed, providing N, the number of
track intersections, is relatively small, Large segments of the track, however, may con-
tain thousands of intersections, making the direct solution of Equation (26) extremely

Here, the third term c¢ has been dropped from f(i') since it has no effect on the solution,

7 The positive definiteness of A is discussed in Appendix A.

f(Z) + an(2) (24-1)

3
L3
%
R4

3T
-
3
u
B




difficult if not impossible, In order to have the capability to process such large segments,
we shun any direct method of solving (26) and select an iterative method, the conjugate

gradient-projection algorithm, In doing so, we will be able to take full advantage of the
fact that the matrix A is sparse (see Appendix A).

g i Y gAY S N M g N
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THE CONJUGATE GRADIENT~-PROJECTION ALGORITHM

Conjugate gradient algorithms are well documented in the literature, References 3
and 4 provide particularly lucid treatises of the subject. These algorithms differ from
ordinary gradient methods in that at each step, mstead of moving in the negutive direction
of the gradient, movement is made along a direction pk which is Q-orthogonal to all previ-
ous step directions p], i.€.,

-‘T - .
kap] = 0: ] = 091,...,k“1 (2/)
where Q is a symmetric, positive definite matrix, 8

For unconstrained problems, the direction pk is obtained from a linear combination

of the present gradient gk and the previous search direction pk 1
P = 9% * By 28)
The directional coefficient g is chosen to satisfy the conjugacy requirement (27).

For linearly constrained problems, the direction p, is obtained as above with the
exception that the gradient is replaced by its projection onto the subspace defined by the
constraints—hence, the nomenclature gradient-projection. This procedure enables satis~
faction of the constraints at every iteration,

To introduce our particular algorithm, let z denote a nominal point satisfying Equa-
tion (23), let Z' denote a varied point, and let p denote a search direction which, when
multiplied by the stepsize a, leads from the nominal point to the varied point. Then, by
definition,

3 =7+ ap 29)
Furthermore, let the present search direction p be related to the previous search direc-
tion b via
— -~ A
= - +
P = -F5(Z,2) + 8p 30)
Equations (29) and (30) contain three unknown parameters - the Lagrange multiplier X,

' the directional coefficient B. and the stepsize a. We will determine these parameters
. so that 1) the constraint (23) is satisfied at every iteration, 2) the present search direc-
' ; tion is A-orthogonal to the previous search direction and 3) the maximum amount of de-

;E crease in the function f(z) is attained at each iteration.

;;

f 8 Vectors py, i =0, 1, ..., k satisfying Equation (27) are said to be conjugate with respect ;
E § to Q. ,i




For the constraint (23) to be satisfied, we must have |

h(z) = 0 G
Since we have assumed z satisfies (23), this implies that
1 - - 1 ™ - -
5 ah(z ) = < [h(z ) - h(z)] =0 (32-1) 1
N P o > ) ;
-a[(z d+e)-(zd+e)]—C (32-2) )
- —]; (_;l —_ T
5 (Z'-z)d=0 (32-3)
!
=7d =0 32-4)
Substituting Equation (30) into Equation (32-4) produces
(-F3(Z.2) + 8p)1d = 0 (33)

Providing that we have forced BTH‘ to be equal to zero in the previous iteration, this
reduces to

Fi(z,ma =0 (34-1)

or

A3 + B +adTd=0 (34-2)

We now choose h so that Equation (34-2) is satisfied. We have

A= -(Az + B)Td/a"d @5-1)
- -fH(2)4/3T (@5-2)
N
= - —,\%E fzk(i‘) (35-3)
K=

To prevent the above logic from breaking down, on the first iteration we set § =0,

N e alaw _sama.

10
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For the present search direction p to be A-orthogonal to the previous search direction

P, We must have ]
BTAp =0 (36)
!
Coupled with Equation (30), this implies that )

-Fg(E,A)Aﬁ + BpTAp = 0 (37-1)

or
FL(Z,0)
B = N 37-2)
51D (

To achieve the maximum amount of decrease in the function £(z) at each iteration we
first note that with A given by (35-3),

—

f(z')= F(z',)) (35%)
Furthermore, since both A and § have been specified, F(’z‘l » A ) is a function of a only.

Fla) = F(Z',}) (39-1)

= F(Z + ap,2) (39-2)

BZ+ op) + A[d (2 + ap)+ e (39-3)
= (%BTAB)QZ + [(Az + b + 1d) 51

U R RGP Go-9 %
= (5 8TAB)" + FL(Z,1)pu + F(0) (39-5) ]

Minimizing kquiation (39-5) with respect to a , we have

—

F () = Bl Ap. + Fi(i,\)p =0 (40) i

s0 that the optimum stepsize is given by

e i

it dilinds o a

LA O i tas P L

e



= -FN(2, )P/ A (11 5
|
Note that for a minimum we must have ‘
¥
XT » il
F () =phA -0 (42) !
!
which will always be satisfied if A is positive definite on the subspace .\11. {(Refer Fqua- 4
‘ tion (32-4).) b
]
The bare basics of the algorithm have now been derived, Many additional properties §
of the algorithm exist, Perhaps the most important is that, when applied to o quadiatic- !
linear problem such as (22) ~ (23), convergence is assured in at most N-q iterations, where ]
q is the dimension of the constraint h, Other properties, such as additional orthogonality ]
properties, will not be discussed here, We will state, however, that due to thesc additional 1
orthogonality properties, Equations (37-2) and (41) can be reduced to i
f
8 = Q(Z,%)/0(z,%) oY
and
Y a7, - b
x = Q(z,2)/p Ap (k) ‘
i
where H
y
=2 T -3 “ 3‘
Qz,2) = F3(Z.0)F5(Z,0) (45)
The symbol " * "' refers to quantities computed in the previous iteration.
7
3
!

12




r Step .

wise

Compute

Compute

The conjugate gradient-projection algorithm has now been fully specified. The matrix
5 ¢
A and the veetor b need to be computed only once,? After this is done, the algorithm is:

Step 1, Seleet a nominal point 7 such that

Compute

Compute

where ¢ iS some small, preselected number .
with step 7.

Step 7. Is the iteration number equal to N-q? If so, stop; if not, proceed with step 8,

Step 8. Compute the directional coefficient f. 1If this is the first iteration, 8 = 0; other-

SUMMARY OF THE ALGORITHM

Check for convergence,

If (51) is satisfied, stop; if not, proceed

9 The matrix A and the vector b require 6 x N storage locations.

Ar DA P Ty U Sl W A -+

e R AR, i SR A=




8 = Q(Z,1)/Q(z,%) (52)

Step 9, Determine the search direction

p= 'Fi(za

Step 10. Compute the optimum stepsize

x) + 8p (53)

o = Q(Z,2)/B"AB (54)

Step 11, Compute the varied point
7'=2

Step 12, Replace the old nominal values Z, D,
zZ , p, and Q(z, \)

and proceed to step 2.

—

+ ap (55)

and Q(E,i ) with the new nominal values

z' (56-1)
P (56-2)
Q(z,1) (56~3)

Once convergence has been attained, the remaining half of the ephemeris errors are
computed via Equation (3).

g
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ON CORRECTING GEOID HEIGHT ERRORS RELATIVE TO

1
A REFERENCE SURFACE :
This section deals with the situation in which segments of the satellite track have been ]
previously corrected and it is desired to correct the remaining segments relative to these, 14
. In such a situation, any of the nodes yi; or Ypj falling in a previously corrected segment e
i are deemed to be errorless. Let I, be the index set of the errorless nodes, Then '
Iy
y].=0for1.»:[O (67-1)
‘-. J ’
1
ypj =0 for p; - [, (G1-2)
Since
Yy, = ¥, =87 3= 1,0 0N (58)
J pJ J }
we must have .
ypj = -6]j for ]j £ Io,pj ¢ I, (59)

Let us now see how these constraints, namely Equations (57-2) and (59), affect our
original problem. Refer to Equations (9) and (10). We want to minimize the weighted
variation J subject not only to the constraint (10), but also to the additional constraints
(57-2) and (59).

At this point, the straightforward approach would be to substitute Equations (57-2)
and (59) into Equations (9) and (10). This would create a simpler, equivalent problem of
lower order. Unfortunately, it would also create a complicated indexing problem,

S o 4 R

Without this substitution, Problem (11) - (12) becomes minimize the quadratic function

f(Z) = %—?TA? +B7 o+ c (60)
with respect to z, subject to the linear constraint 3
i
hz)=c2+¢=0 (61)

where 2, 5, ¢, and A are defined as before and where the N x (mtl)-matrix C and the (m+1)-
vector g are given by

R
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i
|
.
- " — ‘
0 o0 o 0] 1 :
1 ;7 0, i
1 . j= J g
1 0 :
1 1 g, j
0 J }
- | {
C=1" o ol g =| g. (62) v
. .o j [
1 : 1
0 0 g.
it X J
O »
1 0 0. 0 9,
- - . i 2

with
(0, it 1, Do and p. e
9 J; 3 3 ‘

Here, m is the number of erroriess nodes. The first column of the C matrix contains all
ones; the remaining columns each contain onlv one nonzero element whose value is one.

Problem (60) ~ (61) has a unique global solution providing that the matrix A is positive

definite on the subspace M3 = {z: Cz= (—)'} . The problem can be recast as that of mini-
mizing the Langrangian

F(Z,0) = f(z2) + TTh(z) (64-1)
= % 2'A7 + b2+ 3(c"Z + g) (64-2)

with respect to the vector z subject to the constraint (61), and the solution can be found by
solving the linear system

Fa(2,7) = 0 (65-1)

h(z) =0 (65-2)

0 -
Again, the third term c has been dropped from f(z) since it has no effect on the solution,




for the vector z and the vector Lagrange multiplier A .

Referring back to the two previous sections, we can trace the modifications to the con-
jugate gradient-projection algorithm which will be required to solve the system (65). We
have:

p=-F5(z,0) + 8p (66)
instead of Equation (30);
T
Cp=0 (67)
instead of tquation (32-4);
T o SAy - 7
C (—F»Z-(Z,/.) +:p) =0 (68)
instead of Equation (33);
T, ~ &
C'(Az+b+Cy) =0 (69)
instead of Equation (34-2);
-1 - -~
= -cTe) ¢z + B) (70)
instead of Equation (35-1);
F5(Z,%) = f3(2) + G (71)

instead of Equation (49).

since CTC is an (m+1)x(m+1) -matrix, the main concern now is to try to simplify
Equation (70) by solving for the inverse of

L'_'N;lll. 1)
el o — - = — ——
1i10. 0
Lo
110 ,
T P N
cec=}1,- = |- (72)
! ' Ul
| ¢ .
{ LI
] o
.- "0
=1 0. . .01




L . .

analytically. We need to findy , v, and W such that
[ (- [
AUCH I NI B R (73)
Uy 1] [ 0,1
Expanding we have
~T~
yN+uv =1 (74-1)
W+ U= D (74-2)
. Yu+v=0 (74-3)
,)—LT -
; uv. + W o= 1 (74-4)
Equations (74-1) and (74-3) imply that
21
Yo N - (75)
1
-~ 1 1
VErN-w | (76)
1
while Equation (74-4) implies that
N-m+1 11 1
1
1
W=1-uv =2 - . : (77)
N-m . . .
1
1
-m+
| .. ... I N-m 1_

18
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Tiaz+B) =

N-m+1

Returning to Equation (70) we have that

N 2N

-1
1

N-m+ 1

19
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so that

Thus

20

I8
»

(80)

(81-1)

(81-2)

(81-3)

(81-4)
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Substituting this latest result into Equation (71) yields

r 2 vy = - 5 5 Y
o (20 [, (8 + 7))
FZJ(Z’X) -(fzg(z) * )
Foo(Z,0) 0
ZjI
an(z,k) -(fzn(Z) +a)
FA(Z,3) = : - : (82)
Fooo(Z,0) 0
ij
Foo(Z,2) 0
ZJ-m
F, (Z,%) -(f, (2) + )
N N
L .4 _ _

In compact notation

S(F, (Z) + 1) if 1,41 and pjtl
Fo @) = 1% 1 3% To 29 Py (83)
J 0 if ljelo or pjeIO

This completes the modifications to the algorithm.




SUMMARY OF THE NEW ALGORITHM

After computing the matrix A and the vector B, the new steps are:

Step 1. Select a nominal point z such that
Vo, _ T . N b
h(z) =CzZ+g=0 (84)
Step 2. Compute
fz(i) = Az +D (85)
Step 3. Compute
oo I f, (2) (86)
J J
inlo’]Jilﬁ

Step 4, Compute F (E, _i) according to

s -(f, (Z) + ) if 1,471 andp. ¢ I,
ERC S 1 oY (87)
0 11’1\_}.»:IoorpjclC
Step 5. Compute
N . T!_\ - a2
Q(Z, ) = F‘Z‘ \29>\)F‘Z‘(za>\) (88)

Step 6, Check for convergence, Is

Sz 14" < (89) ;

where € is some small, preselected number. If (89) is satisfied, stop; if not, proceed
with step 7.

Step 7. Is the iteration number equal to N-q? If so, stop; if not, proceed with step 8.
Step 8. Compute the directional coefficient ., If this is the first iteration, 8 = 0; otherwise

=

8 = Q(2,%)/Q(2,%) (90)

23  PRECEDING PAGE BLAMK-NOT F1LMED
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Step 9. Determine the search direction

S(Z,%) + op (o1)

“ % N
« = Q{z,))/p Ap (92)
Step 11. Compute the varied point

z' =7+ 3p (93)

Step 12. Replace the old nominal values z, p, and Q(i, ) ) with the new nominal values
z', b, and Q(z, N)

Z=72 (94-1)
p=0p (94-2)
Q(2,%) = Q(Z,3) (94-3)

and proceed to step 2,

It should be noted that when I is the null set, the new algorithm automatically reduces
to the old algorithm,

24




SELECTION OF A NOMINAL VECTOR

In deriving our algorithm, we have assumed that the nominal point Z satisfies Equation
(84). This assumption necessitates that we start the algorithm with such a vector. Al-
though anv such vector will suffice, we might as well use our degrees of freedom wisely
and select a nominal that not only satisfies (84), but also produces the desirable property
that the initial discrete function ¥y yp , 3 =1,...,Nis of minimum modulus.

) )

To accomplish this, we minimize

N
127 Uy ) (95)

with respect to the vector z, subject to Equation (84). Equations (84) and (95) can be
rewritten as

N
2 2
szl z [(yp.+51.) +yp.] (96)
s J J J
j=1
and
N N
z yp_+%2 5, =0 (97-1)
j:] J j=1 J
v, -8, for ’jEIO'Pj‘“o (97-2)
J J
ypj =0 for pje:IO (97-3)

From Equations (97-2) and (97-3) it can be seen that we only need to perform our minimiza-

tion over those yp, for which lj §. I, and P ¢ Iy, subject to the single constraint (97-1).
Taking the partial of the Lagrangian

N
! 2 2 1 . :
L=5 X [(yp * 68y ) +yp_]+x(2 Yot 7 & =~1.) (98)
L

I j

T

—

v




PJ- J J
or
1
TT T Y, Ty,
P j
while Equation (97-1) can be rearranged as
N
1
Z (.yp . + 2\} .
j: : J J
Substituting (99-2) into (100) results in
Z (ypj + '2‘*1j) Xy
J J
p t’I” 1 LIO

Using Equations (97-2) and (97-3) we have

, e Ul-m)
where
D T
2 i IJ 2
ijIﬁ
Placing this result into (99-2) yields
s]j
y = - -— + N.,_.:. ——
pj m

pJ,1JiIl’

(W9-1

(49-2)

(100)

(ron

(102)

(103)

(104

Thus, our optimal nominal z ypj, j=1, ..., Nis defined via Equations (97-2), (97-3),

(103) and (104),

26




as one would expect.
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NUMERICAL EXAMPLES

Test Problems Ve

The conjugate gradient-projection algorithm was developed into a computer-programmed
subroutine writien in FORTRAN V. The algorithm was then applied to several test problems., ;
In each case, the nominal function z was selected via Equations (97-2). (97-3), (1 03) und
(104). Convergence was defined by

VR i (106)
Q(Z,X)/ZTZ <107°

and double precision arithmetic was used in the calculation of the optimum stepsize . and
the directional coefficient 8. The algorithm was termmated whenever I[nequality (106) was
satisfied or the number of iterations reached N-q.!

For these problems, the ephemeris errors were represented by various sinusoids. In
each case, the observations § =1,...,N were corrupted by Gaussian noise with a sigma
level of 0. Ol\/‘ (15 of the ma)dlmum ephemeris error) and the average number of observa-
tions contained in the shortest wavelength of the sinusoid was recorded.

Three different weighting techniques in combination with three different spacing schemes
were used. The weighting techniques were:

(1) Equal weighting in which all of the weights Wi, 1 =1, .., 2N-1are equal .

(2) Inverse weighting in which w; = =1, ¢ee, 2N-1

t1+1’t

where ¢ is a scaling factor and

£

3) Inverse square weighting in which wy ==~ , i
( P (tamt)2

scaling factor,

=1, vvs, 2N-1 where again§ is a

The spacing schemes used are given below.

1 Theoretically, the algorithm has to converge in at most N-q iterations, However, duc
to round-off errors, especially in the calculation of the A-orthogonal directions, it is
possible to impose a convergence criterion that is tighter than the algorithm is capable
of achieving,

FRECEDING PAGE BLANK-NOT F1LMGD
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Tuble 1, Spacing schemes 5

scaled Time
Scheme 1 Scheme 2 scheme 3 E
.3 .1 .20 [
o4 o2 625 :
.D oD «30
N o3 3D
: .7 .9 .10
f 1.3 1.1 b
| 1.4 1.2 .30
; 1.5 1.5 . DD
[ 1.6 1.% . 60
1.7 1.9 60
2.3 2.1 2.20
2,4 2.2 2,25
2.5 2.5 2,30 ;
2.6 2.8 2,35 ’
2.7 2.4 2440
3.3 J.1 2,45
3.4 3.2 2,50 i
3.5 3.5 2,35
3.6 3un 2. 60 i
3.7 3.9 2,65 f
. . 1, 20 i
. . 1.25 '
. . 1.30 t
1
The ephemeris errvors were as follows:
Problem 1: flt) = sin ?t (107)
Problem 2: f(t) = ;A[sin st o+ sin atl (108)
Problem 3: () - <in r).t (109)
Problem 4: Ft) = sin (5t - ) arm

30
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Problem 5; f(t) = % [sin é—t + sin tf (1t
Probl p ) 0 fort -t 112)
robiem 6 . 2
FY) = dsin “t for t >t

In each case. 25 intersections were considered.  The ordered ot ;].] A ;:.3(
and ;li S T D 25! remained unchanged with
{pj:j = 1,...,25} = {3,5,8,1,2,6,4,7,9,12,17,1°,1:,12,22,
- (113)
25,24,23,26,29,31,32,35,34,5);
and
flj:j = l,...,25} = %10,13,15,i6,19,20,21,27,?3,30,33,36,37,
38,40,41,42,43,40 45,46 ,47 48,49 ,50} (11

In Problems 1-5, the set [, was empty, In Problem 6, it was assumed that the track had
previously been corrected from time t =0 to t = tg; and that there was a huge time gap
between tos and tyg. These conditions were simulated by defining the ephemeris error
viu} Equation (112), setting the weight wor equal to zero, and detining 1, = el =1, veu,
25¢.

The results for these problems are illustrated in Figures 1-1x5, Problem 1 is associated
with Figures 1-3, Problem 2 with Figures 4-6, Problem 3 with Figures 7-9, cte, In most
cases the conjugate gradient-projection algorithm required less than the maximom number
of 24 iterations to converge. The plotted solutions represent the sum of the unhiased esti-
mate obtained from the algorithm plus the bias in the true ephemeris ervor. Note that as
the average number of observations per shortest wavelength increases, so does the aceur-
acy of the solution. At 50 observations/wavelength, the accuracy is down to the noise level
of the system, In some cases, depending on the spacing scheme, this level can be achieved
with 25 observations/wavelength. Even with as few as 5 observations/wavelength the
ephemeris errors can still be substantially reduced, At this point, however, relative to our
sampling rate, the ephemeris errors begin to look like high~frequency errors, Since the
conjugate gradient-projection algorithm produces a low-frequency result, the generated
solution may be of lower frequency than the true one, as evidenced in Figure 14,

Not to be overlooked is the fact that the algorithm is relatively insensitive to the weigh-
ting scheme employed. Furthermore, this insensitivity increases as the number of obser-
vations per wavelength increases. Because of its performance over a range of observation
frequencies, inverse weighting was deemed to be superior to inverse-square weighting,

3l




SEASAT Geoid teight Data

Moving from "Alice in Wonderiand™ into the real world, an anualvsis of the first 3493
revolutions of SEASAT was conducted.  From this initial scement of the ~atellite s trek,
good geoid height information was obtained during [25 of the revolutions, From this latter
group of revolutions. 2564 ground-track interscections containing data were produced.  The
conjugate gradient-projection alporithm was then applicd to the resualting 2561 ceoid height
differences. Since time information had been previously removed from the dota, inverse
weighting based on revolution number and fractions thereof was emploved,  The alaorith
required 840 iterations to converge.

A cubic spline with evenly —spaced nodes wos then fitted in the Teast—square sense to
the geoid=height-errov output of the sl gorithm.  The spline was represented as a linear
combination of splime basis functions and a pseudo=inverse solution of cocfficients wis
obtained vii a singular value decomposition (SVDY. Sparious oxcillations were damped Iy
zeroing out an appropriate number of the singular values. A transformation was performerd
prior to entering the SVD so thot, whenever the =olut.on was non-unique. the "minimum
curvature 12 solution was obtained (See Reference o).

The results for revolutions 145 through 151, 207 throueh 213, 284 through 240, and 274
through 280 are given in Figures 19-22, respectively, For these segments, the rms error
of the spline fit ranges between 17 and 20 centimeters,

In order to cvaluate the accurncy of the geoid height correction, a fictitious geoid height
error was asssumed., As a function of the revolution number . this fictitious error was
defined by

3 . .3
f(-) = 5 |sin 3m + sin 5T {15y
4
This particular function was chosen because its frequencey content is similar to that obsery -
ed in Figures 19-22 — the highest frequency present bheing approximately 11, cveles per
revolution.

After corrupting Equation (115) with Gaussian noise at a sigma level of 19 centimeters,
fictitious geoid height differences were computed at the ground-track intersections. These
differences were then fed into the conjugate gradient-projection algorithm: as before. a
cubic spline was fitted to the geoid-height-error output of the algorithm. A comparison
between this spline fii and the fictitious geoid height error is given in Figures 23-26,

This comparison shows (for the revolution spans considered here) that over those segments
of the satellitg's track where no geoid height data exists (over land), we can obtain an
extrapolatedl estimate of the altitude error to an rms-accuracyv of 22 centimeters

(RMS1). Over these segments containing geoid height data (over the ocean), we can 4
obtain an interpolated estimate of the altitude error to an rms-accuracy of 15 cent- ’
imeters (RMS2). :

12" The Ly norm of the second derivative was mimmized,

13
Interpolation hetween data sets.
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SUMMARY

A new technique has been developed for correcting satellite ephemeris errors indirectly
observed from radar aitimetry. This new technique differs markedly from previous methods
in that a different problem is posed and a different type of solution (discrete as opposed to
parameterized-continuous) is obtained. Specifically, a conjugate gradient-projection algo-
rithm is used to find the unbiased, discrete function of minimum weighted variation which
produces the geoid height differences observed at the satellite's ground-track intersections.

It is felt that this new procedure represents a substantial improvement over previous
efforts. First, it accurately models reality by retaining the concept of one. time-continu-
ous, satellite ground track which repeatedly intersects itself. Secondly, it takes into
account correlations between time-contiguous ascending and descending tracks. Thirdly,
it allows for an a posteriori selection of a functional form for curve fitting purposes.
Finally, it requires a minimum amount of computer storage due to the sparseness of the
coefficient matrix of the system to be solved.

It has been demonstrated that the method is accurate. Based on the analysis con-
ducted herein, it appears that an altitude correction to an accuracy of 20 centimeters
rms is possible.

‘The real beauty of the technique, however, lies in the fact that it is a general method
that can be used to reduce any time-dependent, low-frequency error present in nctwork-
type surveys (e.g., oceanographic shipboard and airborne surveys). In the near future, the
method will be employed to remove the diurnal variation present in magnetic surveys as well
as the nonlinear gravimeter drift present in gravity surveys.
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APPENDIX A

Properties of the A Matrix

The A matrix defined in Equations (13) - (16) is symmetric and sparse, The sparse-
ness is due to the relationship between the sets { p;ti=1, veey N } and { 1j: j=1, eeey N } . [
This relationship is such that, in any given row (or column) of the A matrix, there exist
at most 5 nonzero elements.,

The matrix A is also of rank N-1, This is due to the nature of and the relationships
between these nonzero elements, From Equation (14) it can be seen that each diagonal
element is equal to a sum of weights and is, therefore, positive. Furthermore, from
Equations (15) - (16) it can be seen that each nonzero off-diagonal element is equal to the
negative of 4 sum of weights and is, therefore, negative. Not so apparent is the fact that
the sum of the absolute values of the off-diagonal elements in any row (or column) is equal
to the diagonal element in that row (or column), i.e.,

¢
Y

N N
a =3 la = ¥ la m=1,...,N (A-1)
mn T fmen ool n,ml

n#m n#m

Theorem 1. The matrix A is positive semidefinite,

Proof: From Gershgorin's Theorem, every eigenvalue A of A must satisfy at least
one of the inequalities

N
SR 5n2=:1 lam,n m=1,...,N (A-2) i
n#m l H
Substituting (A-1) into (A-2) yields
A - am,m < am’m m=1,...,N (A‘3)
which implies that
0<xx Zam’m (A-4)

Hence, A is positive semidefinite.

e

Theorem 2. The matrix A is positive definite on the subspace M1 = {? x-d=0 }

Proof: A is positive semidefinite {(and thus can be split into ATE where A is the square
root matrix). Hence, we only need to show that for nonzero x € M;, Ax #£o.
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Suppose that xTd =0 and A x=0. Thenx € N(A), where N(A} is the null space of
‘ A. Now d € N(A) since A d =0 and N(A) is of dimension 1 since A is of rank N-1,
} Thus X = ad for some a #0. This implies that xTd=adTd=an#0 which con-
4 tradicts the fact that X ¢ Mjy. Hence, A is positive definite on Ml'

T

Theorem 3, The matrix A is positive definite on the subspace M, = {3?: cTx = '5}

Proof: M2C M,

I e




CNO
ASN(R,E&S)
ONR

NRL

NORDA

NAVOBS

COMNAVOCEANCOM
USNA
NAVPGSCOL
NAVSWC

DSSPO

DMA
DMAAC/STT
DMAH/TC
DMAODS
NOAA/NOS
NOAA /NOS/NGS
NOAA/PMEL
NASA/GSFC
NASA/WFC

ATL
AFGL/Hanscom
DTIC

CU/LDGO
CIT/JPL
0SU/DGS
ODU/DGS
UTA/DAEEM
JHU/APL
MIT/DEPS
Uc/sIo
UM/RSMAS
UH/DO
AEROSPACE
BATTELLE
FEAIL

DRAPER
LOCKHEED
SI?GER—KEARFOTT
GE/0OS

WHOI
SAO
ASC
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